SpaceX火箭的栅格翼(Grid fin)

SpaceX的火箭可回收系统(SpaceX reusable launch system)的目标是让火箭能够重复使用,该回收系统目前被用于Falcon 9 v1.1和Falcon Heavy火箭。回收系统的一个明显特征就是采用了栅格翼(或称“栅格舵”,英文Grid fin)。

spacex-drone-ship-9

图:Falcon 9火箭上展开的栅格翼

SpaceX火箭栅格翼的首次测试出现在2014年6月17日。测试火箭上升1000米后,然后徐徐成功降落。视频中可清晰地看到,栅格翼在上升过程中是收起的,开始降落时展开,精准控制火箭降落。

在2015年1月10日,Falcon 9火箭成功发射,其携带的为国际空间站(ISS)运送货物的龙飞船(Dragon ship)也同样成功完成任务,但火箭在随后进行海上自动驾驶无人船平台降落回收时失败。对于此次火箭发射回收中栅格翼的作用,官方描述是:“A key upgrade to enable precision targeting of the Falcon 9 all the way to touchdown is the addition of four hypersonic grid fins placed in an X-wing configuration around the vehicle, stowed on ascent and deployed on reentry to control the stage’s lift vector. Each fin moves independently for roll, pitch and yaw, and combined with the engine gimbaling, will allow for precision landing – first on the autonomous spaceport drone ship, and eventually on land.(用于本次猎鹰9火箭精准着陆的关键升级措施是增加了高超音速栅格翼。栅格翼以X翼形环绕火箭安装,上升时收起,重入大气层时展开以控制一级火箭的升力矢量。每个栅格翼独立做出翻滚、俯仰和偏摆动作,结合火箭引擎的推力矢量控制,从而实现精准着陆。首先实现在海上自动驾驶无人船平台上着陆,最终实现在陆地着陆。)”

多次返回着陆尝试后,猎鹰9一级火箭在2015年12月首次陆上返回降落成功,2016年4月首次在海上自动驾驶无人船平台上返回着陆成功

视频:栅格翼执行动作,控制火箭主推进器降落在海上自动驾驶无人船(视频来源:Pranay Pathole

视频:火箭主推进器降落在陆地(视频来源:@SpaceX

猎鹰9火箭的栅格翼尺寸不大,约4英尺X5英尺见方。栅格翼的翻滚、俯仰和偏摆的三维度控制动作可以让14层楼高的一级火箭实现最大20度角的偏转

图:从Falcon 9火箭上拆卸下来的栅格翼(图片来源Justin Swartz

图:在Space Center Houston展览的Falcon 9火箭,栅格翼展开,和参观的人形成大小对比。(图片来源Manuel Delgado

2017年6月的一次发射中,栅格翼进行了升级,一者尺寸增大,二者材料由铝换成了钛。铝制栅格翼在表面有热保护涂层,即便如此在火箭重入大气层时也较容易烧坏。钛制栅格翼不需要热保护涂层,抗热性能也有显著提高,回收后可不用更换。

图:Falcon 9火箭的钛制栅格翼(图片来源arstechnica

栅格翼是苏联人在上世纪70年代发展起来的技术,最早用于弹道导弹控制。研究和实践证明,栅格翼的一个重要特征就是能够比传统平板翼(Planar fin)更好地控制飞行器,让飞行器更不容易失速(The small chord length of grid fins also makes them less likely to stall at high angles of attack. This resistance to stall increases the control effectiveness of grid fins compared to conventional planar fins.具体参见这个2006年的旧帖Missile Grid Fins—很好的介绍栅格翼的知识帖)。通俗地讲,就是栅格翼可让火箭更不容易栽跟头,这也是Falcon 9火箭在降落时为何要打开栅格翼的重要原因。

栅格翼的另外一个空气动力特征就是在亚音速和超音速状态下,其波阻(Wave drag)不高于传统平板翼,也可以说能够低于平板翼。但是在马赫数为1,即所谓transonic状态时,其波阻却明显升高。栅格翼外形特征与减阻的关系,此论文有所研究。

中国目前也在进行利用栅格翼的火箭回收试验。2019年7月,长征二号丙运载火箭在发射中进行了所谓“栅格舵分离体落区安全控制技术”试验。“此次长二丙火箭一子级的落点控制就采用了栅格舵(即‘栅格翼’)控制,试验的成功对于解决我国内陆发射场落区安全问题有重要意义,同时也为我国运载火箭后续助推器及子级的可控回收、软着陆、重复使用等技术奠定坚实基础。”

2019年11月3日,长征四号乙运载火箭(CZ-4B)在太原卫星发射中心成功发射,火箭序号“遥三十八(Y38)”。资料显示,“此为首枚采用栅格舵一子级落区控制技术的长征四号乙运载火箭”。2020年9月21日,长征四号乙运载火箭在酒泉卫星发射中心成功发射,火箭序号“遥四十一(Y41)”。如下宣传图上,火箭一子级上方有展开的栅格舵。

图:长征四号乙运载火箭一子级展开的栅格舵(图片来源:知乎

2020年12月22日,我国新一代运载火箭长征八号在中国文昌航天发射场首飞,任务取得圆满成功。中国航天科技集团官方文章中,一张“未来改进型长征八号运载火箭拟开展芯一级与助推器整体垂直回收”示意图显示,芯一级火箭降落时,其上部有四个栅格舵展开。

未来改进型长征八号运载火箭拟开展芯一级与助推器整体垂直回收示意图(图片来源:中国航天科技集团


SpaceX火箭返回降落时的推力控制

SpaceX猎鹰9火箭(一级火箭)返回降落时的推力控制主要有如下三种形式:

一.点火发动机数量

猎鹰9一级火箭目前共有9个Merlin 1D发动机。毫无疑问,发射时这9个发动机全部点火。一级火箭返回时,第一次重新点火(Boostback Burn)开3个发动机,火箭姿态调整到返回轨道。在进入大气层之前有一次点火(Entry Burn),此次也是3个发动机点火工作,目的是把一级火箭的速度降下来。着陆前约30秒最后一次点火(Landing Burn),开1个发动机,把一级火箭的垂直速度降到不超过6米/秒,实现软着陆。

图 猎鹰9火箭发射及返回降落过程示意(图片来自zlsadesign

二.发动机推力可调

单台Merlin 1D发动机的推力可调范围是100%-70%(170,000lbf-119,000lbf,海平面推力)。一级火箭最后一次点火(Landing Burn)只开1个发动机,推测此时的推力应该不到100%。因为单台Merlin 1D发动机的最大推力超过一级火箭的空重,如果开100%全力,会让加速度由负变正,一级火箭又要往上窜了。

图 猎鹰9火箭的参数(含推力数据,资料源自猎鹰9火箭用户手册2.0

火箭变推力发动机的技术比较复杂,下图是液体火箭发动机的推力可调技术方法:

图 液体火箭发动机推力可调技术(资料源自NASA网站上的论文Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review

猎鹰9火箭的Merlin 1D发动机采用了何种推力可调技术?目前公开的资料几乎没有。

顺便提一下,嫦娥三号探测器采用的7500N变推力发动机,是中国首台大范围变推力发动机(参见论文《嫦娥三号探测器7500N变推力发动机研制》,作者为雷娟萍,兰晓辉,章荣军,陈炜)。

2020年12月22日12点37分,我国新一代运载火箭长征八号在中国文昌航天发射场首飞,任务取得圆满成功。中国航天科技集团官方提到了长八火箭发动机推力调节技术的首次工程应用:“长八火箭还肩负着验证运载火箭可重复使用技术的重要使命,此次发射的首飞火箭上,实现了发动机推力调节技术的首次工程应用,提升了运载火箭任务适应性,为可重复使用打下坚实基础。”

三.发动机推力矢量

资料显示Merlin 1D发动机有推力矢量(Thrust Vector)能力,这让一级火箭在即将着陆时具备横向移动能力。火箭发动机喷嘴可略微偏转(有待获取更多证据确认),产生推力矢量。降落的一瞬间,即使火箭略微偏离降落点中心位置,推力矢量也可让火箭横向移动,从而能够对准靶心着陆。说推力矢量是临门一脚的关键技术应该不为过。

图 猎鹰9火箭的推力矢量控制(见图左侧,图片来自zlsadesign