Octo:开源通用机器人策略模型
论文Octo: An Open-Source Generalist Robot Policy探讨了如何设计和开 […]
论文Beyond Closure Models: Learning Chaotic Systems via P
物理信息神经算子(Physics-Informed Neural Operator,PINO)有效提升混沌系统模拟的效率和精度 Read More »
论文《Robot Utility Models: General Policies for Zero-Shot
机器人效用模型(Robot Utility Models, RUM)实现零样本部署(Zero-Shot Deployment) Read More »
“布朗带速度”增强(‘Brownian Tape Speed’ Augme
“布朗带速度”增强—‘Brownian Tape Speed’ Augmentation Read More »
华盛顿大学的Steve Brunton教授关于“物理引导的机器学习”(Physics-Informed Mac
物理引导机器学习,Physics-Informed Machine Learning(PIML) Read More »
1. 机器学习中数据稀缺问题的引言 在机器学习中,模型的成功高度依赖于大规模、高质量数据集的可用性。这些数据集
数据稀缺(Data Scarcity)的应对策略:数据扩增(Data Augmentation) Read More »